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1 Summary 
This document summarizes activities and results in the AORIST project under the DARPA IXO 
Autonomous Negotiating Team (ANT) program subsequent to those reported in the Interim Re-
port of July 2002. Together with that report, it constitutes the final report of the project. 

Altarum’s activities during this period have been devoted to two lines of programmatic support 
and two lines of scientific investigation. 

Programmatically, Altarum contributed a solver based on our pheromone learning mechanisms 
to the 3 June 2003 demo of the Schedules Negotiated by ANT-based Planner/ Maintenance 
PLANing Tool (SNAP/MAPLANT) system, and coordinated production of the ANT eBook. The 
Altarum solver (called RAPSIDy, “Resource Allocation Problem Solver Incorporating Dynam-
ics”) is a repair solver: it starts with an existing solution and modifies it incrementally, thus 
minimizing the impact of rescheduling on existing commitments. 

Altarum’s scientific work during this period has focused on two topics. First, we have explored 
the feasibility of a quick review tool (QuiRT) that would use rapid characterizations of a task al-
location matrix to estimate the solvability of the matrix. Second, we have extended the resource 
allocation game (our generalization of the minority game) to arbitrary networks of interacting re-
source allocators, thus enabling exploration of the dynamics of logistical systems such as supply 
networks Logistics Resource Allocation Game (LogRAG). 

This work has led to new take-aways in addition to those described in our interim report. 

• We have begun developing a metaphor based on the statistical mechanics concept of uni-
versality to characterize multi-agent system and understand when refinements to agent 
reasoning may or may not pay off in improved system performance.  

• The LogRAG framework promises to be a useful modeling tool for leaders in the DoD 
logistics community. 

We are actively pursuing transition of these tools and techniques in several areas: 

• Supply network engineering for defense contractors; 

• Personnel management for the Navy; 

• Modeling dismounted infantry; 

• Military logistics. 

In addition, we have produced several new publications covering work done during the entire pe-
riod of the project. 

2 ANT Program Support 
Altarum contributed a solver based on our pheromone learning mechanisms to the 3 June demo 
of the SNAP/MAPLANT system, and coordinated production of the ANT eBook. 
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2.1 RAPSIDy Solver for ANT Demo 
RAPSIDy (Resource Allocation Problem Solver Incorporating Dynamics) is a repair solver 
based on some of the concepts developed by the Altarum team during the ANT program. By “re-
pair solver” we mean one that begins with an existing schedule and a set of new constraints and 
attempts to deliver a scheduled that incorporates the new constraints with minimal change to the 
previous schedule. 

RAPSIDy interacts with the ISI SNAP system 
(Figure 1). It receives the definition of the cur-
rent scheduling problem as well as user prefer-
ences and requirements and it delivers a set of 
assignments that (partially) solve the problem 
under the given constraints.  

A scheduling problem as presented by SNAP 
(Figure 2) comprises a set of resources (pilots, 
planes, ranges, simulators, …) and a set of tasks 
(missions). Tasks specify a number of require-
ments that all have to be met to fulfill the task. 
Requirements provide the constraints on the eli-
gibility of resources to be assigned to this task. A 
task is divided into contiguous temporal segments, which jointly define the overall duration of 
the task. A requirement of the task may be associated with one or more of these segments and 
thus, a resource may be assigned to a task (through the specific requirement) for only parts of the 
overall task duration. 

Indirect
Negotiation

RAPSIDyAgent System
Creation

Scheduling
Problem

Solution
TranslationSNAP

Report Best
SolutionJointAPIProblem

Translation

User Solution
Presentation

 
Figure 1. RAPSIDy directly interfaces 
with ISI/SNAP to solve (re-)scheduling 

problems. 

Many of the constraints on the allocation of resources to the requirements of a task at a given in-
terval within the overall planning horizon are hidden from the operation of a solver (such as 
RAPSIDy) connected to SNAP. Instead, a solver explores the permissibility and value of poten-
tial task assignments through interactions with a domain Oracle inside the SNAP system. This 
arrangement has the advantage of avoiding the explicit representation of constraints arising in a 
specific domain within the solver. Instead, all the solver knows about is a general scheduling 
problem (assign resources to requirements at specific times) with the potential for failure of task 
configurations that are prohibited by the Oracle even though they meet the requirements of the 

general problem structure. On the other hand, the 
lack of the explicit representation of constraints 
leads to a significant overhead in the operation 
of the solver, since it needs to explore regions in 
the search space of the general problem even 
though they are excluded by the specific domain 
constraints. This overhead led to a significant 
slow-down of the solver operation, especially in 
the region of problem space, where the abstract 
capacity of the system (availability pattern of re-
sources) is near the abstract demand by the tasks 
(requirement pattern). In this case, the resulting 
pattern of permissible and forbidden configura-
tions in search space is very complex and the 

Resource
Time

Planning Horizon

Task

Resource
Resource

“anchor”
segment Valid Anchor

Start Times

Requirement (in some segments)
Requirement
Requirement

Eligibility of Resources for
Requirements depends
on Time and Tasks that
are already scheduled.

! Hidden !
! Problem !

! Complexity !

e.g., Pilot,
Range,
Aircraft

Segments (contiguous) 
(e.g., brief, execute, debrief)

 
Figure 2. A scheduling problem com-

prises resources, tasks and their associ-
ated requirements. 
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Oracle needs longest in deciding whether a configuration is acceptable or not (peak in effort 
curve).  

RAPSIDy implements a local distributed hill-
climbing approach (Figure 3). Each task in the 
problem definition is assigned an agent. The 
agent’s goal is to find an acceptable assignment 
for all its requirements within the space of re-
sources and the planning horizon interval. This 
Resource-Timeline Environment (RTE) provides 
the shared environment of the task agents, in 
which they may experience the domain-
independent scheduling constraints (e.g., tasks 
may not overlap) without consulting the Oracle. 
For all domain-specific constraints (e.g., eligibil-
ity of a resources for a requirement at a specific 
time), task agents interact with the Oracle. 

Time 

Res
ou

rce
s

Task
Agent SNAP OracleHidden Domain Constraints:

1. Permitted Resources

2. Available Intervals

3. Location Preferences

•Book Whole Task
•Change Location in RTE:

•Resource Assignment
•Anchor Start Time

•Drop Out

Local Hill Climbing on Complex
Objectives’ Fitness Landscape

 
Figure 3. RAPSIDy performs a local dis-
tributed hill-climbing search for the best 

global assignment. 

Once the task agent has found an acceptable as-
signment in the RTE, it then explores local 
variations of this assignment to improve its 
evaluation by the Oracle with respect to the user 
preferences (Figure 4). Local variations of the 
assignment include changes in the temporal allo-
cation of the task (slide up or down the timeline) 
or in the individual assignment of resources to 
specific requirements. At this point, RAPSIDy 
only considers user preferences with respect to a 
previously constructed schedule. Tasks seek to 
change their assignment towards configurations 
that match this “old” schedule. Thus, the RAP-
SIDy solver attempts to repair an existing sched-
ule that needs to be modified either because new 
tasks have been added to the problem, or the resource availability has changed in some way. It is 
the goal of RAPSIDy to create a new schedule that resembles the old schedule as much as possi-
ble and thus minimizes the changeover costs involved with distributing the new schedule infor-
mation. 

Time 

Reso
urce

s

Task
Agent

continuously tries to improve
its assignment in schedule

based on external objectives Task
Agent

changes in problem structure
may occur at any time

 
Figure 4. Task agents enter the RTE with 
the permission of the Oracle and then ex-
plore local variations of their assignment 

to improve the overall solution. 

We were able to compare the RAPSIDy solver with two other scheduling approaches constructed 
by other ANTS teams. Compared to the SerialCrawler, a greedy assignment approach with sys-
tematic backtracking, RAPSIDy performs slower but delivers better solutions especially for more 
complex problems. Alternatively, when compared to the PseudoBoolean solver, RAPSIDy’s lack 
of detailed temporal reasoning reduces the quality of solutions to problems of extreme complex-
ity. In such problems, the space of acceptable solutions is reduced to single points rather than re-
gions that could be explored by our solver. But RAPSIDy finds slightly less valuable solutions in 
much shorter time. 

RAPSIDy was integrated with the ISI SNAP system and demonstrated at the 3 June 2003 sched-
uling workshop. 

 3



   

2.2 eBook 
Altarum chaired a group of contractors who compiled an ANT eBook, an electronic snapshot of 
the research developed during the ANT program [3] This compilation includes detailed descrip-
tions of the two challenge problems addressed by the ANT program, a survey of the modeling 
tools and techniques developed by ANT contractors (including demos of some of the more ma-
ture tools), and a catalog of reusable software with points of contact. 

3 QuiRT 
The objective of QuiRT, the Quick Review Tool, is to identify heuristics that can quickly review 
a resource allocation problem of the Marbles form to provide a quick estimate of the difficulty of 
solving it and bounds on the value of potential solutions. Such a tool would be invaluable in 
making more effective use of the more detailed solvers embedded in CAMERA(Coordination 
and Management Environments for Responsive Agents)-MAPLANT, since full solution of a 
problem by these systems takes more than an hour, too long for interactive refinement. In our in-
terim report, section 4.3.2, we describe some initial work toward this objective, including the 
VPR (value per resource) estimate that gives a close upper bound of the recoverable value. In 
this period, we did further work on estimating the difficulty of solution. Our results are for the 
most part negative, demonstrating that some promising ideas do not in fact discriminate easy 
from difficult problems. In this section we summarize the form that QuiRT might take, review 
the VPR metric, and survey our work on estimating difficulty. 

3.1 Notional QuiRT Interface and ConOps 
Figure 5 and Figure 6 show a notional QuiRT interface that captures the basic concept of opera-
tion that QuiRT technology would support. The screen has four areas. 

• The upper left corner of the screen shows a problem in the form of a resource eligibility ma-
trix. For clarity, in this sketch the matrix does not distinguish separate requirements within 
tasks.  

• The upper right corner plots the maximum retrievable value estimated for this problem (ver-
tical axis) against the feasibility of 
solution (inverse of difficulty, 
horizontal axis). The upper right-
hand corner of this plot is the most 
desirable location for a problem, 
indicating that it can easily be 
solved and will yield high value. 
The lower-left corner is the least 
desirable location, occupied by dif-
ficult problems likely to yield only 
little payoff.  
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Figure 5: Notional QuiRT Interface (Step 1) 

• The bar charts at the bottom of the 
display resources ordered by a 
measure of the demand or load that 
they face (left) and tasks ordered 
by an estimate of how constrained 
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they are by resource availability 
(right). These bars may be color 
coded to indicate levels of load or 
constraint that are unacceptably 
high.  M
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Figure 6: Notional QuiRT Interface (Step 2) 

This display provides a planner with the 
information needed to modify the prob-
lem before submitting it for solution. 
Modifications can take several forms, 
including adding or removing eligibility 
indications in the problem matrix, 
changing the value associated with in-
dividual tasks, changing the quantity of 
each class of resource that is available, 
or changing which tasks are active in 
the problem.  

In this example, a planner might notice that resources P23 and P24 are highly overloaded, and 
that task C15 is attempting to get both of them. Perhaps removing C15 from the problem would 
improve the problem’s location in the space of value x feasibility. Figure 6 shows a possible 
result after such a change. Deselecting C15 drops the load on resources P23 and P24, lowering 
the constraint on Task A03. The result is to make the problem more feasible while only slightly 
reducing the maximum recoverable value. 

Such a vision requires a quick way to estimate the location of a problem in the value x feasibility 
space, and the challenge of QuiRT is to develop such estimators. 

3.2 Estimating Value: the VPR Metric 
A fairly effective upper bound of the value recoverable from a problem can be calculated as fol-
lows: 

1. Calculate the a value-per-resource required (VPR) for each task by dividing the task value 
by its number of requirements (and therefore needed resources).  

2. Rank all tasks by their VPR from high-to-low. 

3. Select tasks for inclusion in the solution upper bound set by choosing the highest VPR tasks 
until they have used all the available resources. If the last task can only be partially satisfied 
by the remaining resources, include a pro-rated portion of the task proportional to the avail-
able resources. 

4. Add up the task values in the upper bound set, and this becomes the upper bound value of a 
solution. 

This estimate is an upper bound because no consideration is given to resolving resource con-
flicts, and this solution may not be feasible (and usually isn’t). Nevertheless, it is a useful metric 
for evaluating experimental runs, and has proven to be quite tight. Figure 7 compares the upper-
bound to the Marbles algorithm and also to the Contention Estimate described in the interim re-
port.  
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3.3 Estimating Difficulty 
Estimating problem difficulty has 
proven to be a much more challeng-
ing task. We had very limited re-
sources to devote to this question, 
and have been able only to establish 
some preliminary and largely nega-
tive results. This section describes 
how we generated experimental 
problems, and experiments with 
several algorithms: for solving or 
classifying them.  

3.3.1 Generating Experimental 
Problems 

In this preliminary stage of the in-
vestigation, we have focused our 
attention on Marbles problems with 
only one requirement per task. This problem, which is known in the Operational Research (OR) 
literature as the Assignment Problem (AP), is tractable. The Hungarian Algorithm, known since 
1955, can solve it or show that no solution exists in O(N3) [6], and more efficient methods have 
since been discovered. Our motive in beginning with such a simple problem is our need to de-
velop intuitions about how the degree of a problem’s difficulty manifests itself. Initial experi-
ments require readily computed solutions as baseline comparisons. Even within the AP we see a 
range of problem difficulty, and if a metric cannot discriminate these, it is not likely to be useful 
when applied to intractable problems. 
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Figure 7: Comparison of (VPR) Upper Bound with 
Marbles performance and Contention Estimate 

In generating test problems, we focus on square matrices with N rows and columns and k >= N 
marked cells. (Any matrix with more tasks than resources is unsolvable, and any matrix with 
more resources than tasks can be reduced to a square matrix whose solution also solves the initial 
problem.) We define a Trivially Unsolvable Matrix (TUM) as a matrix in which at least one row 
or column is empty. We considered three mechanisms for generating test matrices. 

Seeded Matrices.—The simplest approach to generating solvable matrices is to begin by filling 
the diagonal, then randomly assign the remaining k – N marks to other cells. However, we want 
to generate a problem set that includes unsolvable matrices as well, and all seeded matrices are 
solvable by construction. (Figure 8 proves that there are unsolvable matrices that are not 
TUM’s.) X   

X   
 X X 

Figure 8: An 
Unsolvable 
Matrix that 

is not a 
TUM 

Nontrivial Matrices.—At the other extreme, we can assign k marks randomly 
to the cells of the matrix, and afterward discard any matrices that turn out to be 
TUM’s. This approach provides the most neutral distribution of test cases. 
However, when N is large and k ~ N, virtually every matrix generated is a TUM, 
and generating a useful set of test cases is extremely time consuming. 

Modified Nontrivial Matrices.—To get reasonable yield of experimental 
cases, we follow the Nontrivial method until the number of marks remaining to 
be assigned is equal to the maximum of the number of unmarked rows or the 
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number of unmarked columns. Then the range of cells to which the remaining cells are assigned 
randomly is restricted to cells in an unoccupied row or column. 

3.3.2 Algorithms 
This section describes several algorithms we tested on these problems. The first three try to gen-
erate solutions. In the first two, failure to generate a solution does not prove that no solution ex-
ists, but in the third it does. The fourth algorithm attempts to detect difficult problems without 
constructing a solution. All of these mechanisms, unlike the Hungarian Algorithm, can be ap-
plied to problems more complex than the AP. 

3.3.2.1 Greedy Solver 
Perhaps the simplest approach is to  

• select a marked cell at random 

• make the assignment that it indicates, 

• remove all other markings from the marked cell’s row and column, 

• repeat until problem is solved or no markings remain. 

This extremely simple algorithm serves as a benchmark for other approaches. Figure 10 shows 
how the percent of matrices solved by the Greedy method varies as a function of k for seeded and 
nontrivial test cases. These results lead to two observations. 

First, we observe the easy-hard-easy profile that we have seen in other contexts [8], reminding us 
that adding flexibility (in this case, more 
marks) to a highly-constrained system 
can increase the difficulty of solution. 

Success Rate vs. # of X's (20000 configs, 1 try)
with seeded solution (minimum X solver)
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Figure 9: Percentage Solved with Min-X solver.—
Top: seeded matrices. Bottom: nontrivial matrices. 

Second, observe that making a single as-
signment moves our location on these 
plots in two directions. First, it reduces 
the N of the remaining problem by one, 
thus moving vertically to the curve for 
the next lower N and increasing the per-
centage of success. Second, it reduces k 
by the number of marks in the selected 
row and column, moving us to the left. 
In the region to the right of the mode in 
these plots, where percentage solved is 
increasing with k, this shift has the effect 
of reducing the percentage solved.  

3.3.2.2 Min-X Solver 
The second observation on the results 
from the greedy solver suggests a heuris-
tic of selecting the assignment that re-
duces k the least. We call this the Min-X 
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Figure 10: Percent of test matrices solved by 
Greedy solver. Top: seeded data. Middle: nontrivial 
data. Bottom: difference between top two plots. 

strategy. Figure 9 shows the results. This 
heuristic significantly outperforms the 
greedy approach, but still fails to find 
about 5% of the solvable problems cases 
in the most difficult region on a single 
try.  

3.3.2.3 Sauter’s Sieve 
The intuition behind the TUM can be ex-
tended to define high-order versions of 
the TUM. We use the term “filade” as a 
generic term to describe either a row or a 
column. If we are discussing one filade, a 
“counterfilade” is another filade or-
thogonal to the one under discussion. A 
TUM has one filade with no marks in its 
intersection with any counterfilade 
(Figure 12). Similarly, a matrix with two 
filades having marks that intersect with 
at most one counterfilade is unsolvable 
(Figure 11). In general, any matrix that 
has n filades whose intersections with 
fewer than n counterfilades are unmarked 
is unsolvable at level n – 1. (Thus a 
TUM is unsolvable at level 0.)  

This notion can be used to define another approach to solving problems, named “Sauter’s Sieve” 
after its inventor. Define an “obligatory kernel” as a set of n filades with n marked intersections 
with counterfilades. Then repeatedly  

• select a smallest obligatory kernel 

• make assignments 

• repeat until either the problem is solved, or the problem has been re-
duced to a Level-m unsolvable matrix. 

X    
X X   
 X   
 X X X 

Figure 11: A 
Level-1 Unsolv-
able Matrix.—
Two filades (col-
umns 3 and 4) 
have fewer than 
two marked inter-
sections. 

X    
X X   
    
 X X X 

Figure 12: A 
Level-0 Unsolv-
able Matrix.—
One filade (row 3) 
has fewer than one 
marked intersec-
tions. 

It is an open question whether Sauter’s Sieve is 
complete (whether it will in fact find all unsolv-
able problems). We expect that a completeness 
proof can be constructed from Hall’s Marriage 
Theorem [5]. 

3.3.2.4 Entropy Measures 
The definition of multiple levels of unsolvableness 
that underlies Sauter’s Sieve leads to another intui-
tion. A problem in which marks are clustered in a 
few filades will be harder to solve than one in 
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which they are distributed more 
evenly across the filades. This 
leads us to hypothesize that high 
filade entropy should correlate 
with low solvability. Such a 
measure would have computa-
tional complexity linear in the 
size of the matrix, and so would 
be much more efficient than 
measures (such as Sauter’s Sieve) 
that require actually attempting to 
solve the matrix. 

To test this hypothesis, we gener-
ated a set of modified nontrivial 
problems with N = 36. We define 
filade entropy F = - ∑pi log(pi), 
where pi = (population of ith fi-
lade) / k. We estimate a problem’s 
solvability by running the Min-X solver ten times, and declaring the problem unsolvable if no so-
lution is found in ten trials. 

50 100 150 200
k

0

0.5

1

1.5

2

S

 

Figure 13: Row Entropy of N = 36 matrices as a function 
of k.—Red dots indicate unsolved matrices; green dots in-
dicate solved matrices (solvability based on ten trials with 
Min-X solver). 

Figure 13 plots the row entropies as a function of k, marking solved matrices with a green dot 
and unsolved ones with a red dot. Expected features include: 

• Entropy increases with k (since larger values of k provide more combinatoric options for row 
occupation numbers) 

• Unsolved matrices occur for 
intermediate values of k, while 
low and high values of k yield 
solvable matrices (the “easy-
hard-easy” pattern discussed 
above). 

What we are seeking in this plot is 
evidence that the entropy differs 
systematically as a function of 
solvability. There is no evidence 
of such a dependency. 

Because of symmetry, there 
should be no systematic differ-
ence between row and column en-
tropies. Figure 14 checks this by 
plotting the ratio of row entropy 
over column entropy for each matrix. As expected, the distribution is flat. 

50 100 150 200
k

0.6

0.8

1

1.2

1.4

1.6

S

 

Figure 14: Ratio of Row Entropy to Column Entropy.—
Unsolved matrices are red, solved ones are green. 

The result of this exploration is that filade entropy, applied in the simplistic manner discussed 
here, does not estimate the solvability of a matrix. 
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4 Logistics RAG 
In the first period of the project, we generalized the Minority Game (MG [4]) in a number of 
ways to make it more directly comparable to resource allocation problems [10]. The resulting re-
source allocation game (RAG, and a simplified version known as the MiniRAG) permits inde-
pendent variation of supply and demand, supports more than two suppliers, and allows several 
forms of partial awards. Still, the (Mini)RAG (like the MG) describes only the allocation of one 
commodity among a population of suppliers and consumers. To apply our methods to military 
logistics systems, we have begun to develop ways to cascade several MiniRAG’s together to 
form a logistics Resource Allocation Game (LogRAG). This section describes the structure of 
the LogRAG and some preliminary experimental results. Full exploration of the dynamics of this 
coupled resource allocation model await future programs. 

4.1 Structure of the Logistics RAG 
Our MiniRAG model has three main components. It comprises a 
population of Consumer agents that repeatedly choose among mem-
bers of the Supplier agent population to request one Resource each. 
Figure 15 shows a particularly interesting configuration of the 
MiniRAG model, in which there is one more consumer than there are 
resources at the two suppliers. We call this configuration the Minority 
Game configuration, since its competition dynamics are those of the 
widely studied Minority Game. 

The LogRAG model introduces another component, the Site, which 
structures our populations in a network, but does not add any new dy-
namic process. In our model, we assign each supplier its own site. The supplier has its resources, 
and we require that each resource is associated with at least one consumer at that site, which pro-
vides the “input material” to make the resource. The 
number of consumers per resource is fixed for each 
site and all consumers of a resource have to succeed 
in their bidding before the resource becomes actually 
available to the supplier. Our model assumes that the 
consumer continues bidding until it succeeds and 
then it holds the input material until its peers have all 
acquired their input to collectively make the re-
source. 

Consumer
Population

Supplier
Population

Resources  

Figure 15. MiniRAG 
components form one 
competition process. 

Consumer

Supplier

Resource

Site

Consumer

Supplier

Resource

Site

 

Figure 16. Resource competitions in-
teracting in a network. 

Figure 16 shows an example of a LogRAG configu-
ration with a network of 6 sites. The network struc-
ture determines which suppliers are accessible to the 
consumers of a particular site to send bids for their 
input material. In the example we see that the com-
petition for resources is more complex than in the 
MiniRAG model, since consumers compete not only 
with other consumers at the same site (as between 
the top and middle layers), but also with a dynami-
cally changing subset of consumers from neighbor-
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ing sites (as between the bottom two layers). 

Some of the sites in the LogRAG network are special. First, there are sites at which the consum-
ers do not have access to any suppliers (the bottom layer in Figure 16). These are considered 
“Raw Material Suppliers (RMS)” in the supply network, which are therefore assumed to always 
have the full set of resources available for distribution (material flow into the network). RMS re-
sources do not require any consumer agents. Secondly, there are sites to which no consumer has 
access (the top layer in Figure 16). These are considered the “Original Equipment manufacturer 
(OEM)” of the supply network. Resources that are produced at an OEM site are immediately 
consumed (material flow out of the network). 

4.2 Initial Experiments 
We implemented the LogRAG model using our in-house agent simula-
tion framework and we integrated the model into our parameter sweep 
infrastructure to perform systematic exploration of the model’s pa-
rameter space. 

To test the code of our implementation, we configured the LogRAG to 
match the MiniRAG. Figure 17 shows the LogRAG configured to re-
produce the Minority Game dynamics of the MiniRAG. The configu-
ration comprises one OEM and two RMS sites, there is one more con-
sumer at the OEM site than there are resources at the RMS sites com-
bined, and the resources at the OEM site only require one consumer to 
provide input material. 

The plots in Figure 18 show the outcome of a series of experiments in 
which we kept the capacity of the two RMS fixed to 15 resources each but varied the number of 
resources (and thus consumers) at the OEM site from 15 to 45. The first plot shows the “Mean 
Award Rate at the OEM” metric, which is the probability for a consumer at the OEM site to suc-
cessfully bid for an input resource. The second plot shows the “Standard Deviation of the Group 
Size at an RMS” metric, which captures the normalized variation of the number of bids coming 
in to a RMS site. We applied both metrics in the MiniRAG experiments already and, just as in 
the MiniRAG implementation, we find the characteristic phase structure of the “underloaded” 
(small N), the “limited resource” (N near RMS capacity), and the “overloaded” (large N) regime 
of the distributed resource allocation. Thus, we confirm the correctness of our LogRAG imple-
mentation. 

OEM

RMS RMS  

Figure 17. LogRAG 
in MiniRAG Minor-
ity Game configura-
tion. 

 

Figure 18. Parameter sweep of MiniRAG configurations. 
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Next, we explored the dynamics of a lar-
ger LogRAG, diagrammed in Figure 19. 
The nodes are configured at each level to 
have abundant supply (thus, working up 
from the bottom level, 2 x 8 > 15, 2 x 15 
> 27, 2 x 27 > 49), except that the total 
supply available to Tier02a is swept from 
6 (undersupply relative to Tier02a’s de-
mand of 15) to 26 (oversupply). 

At most nodes, the mean award rate as a 
function of the supply to Tier02a is flat at 
100%, as would be expected. However, 
Figure 20 shows that Tier02a’s depend-
ents depend on its level of supply in ways 
that are not immediately intuitive. On the 
left, the transition at Tier02a is just what 
we would expect for an isolated RAG. 
(The reverse from left to right relative to 
Figure 18 is because here we are sweep-
ing supply, and there we are sweeping demand.) In the center, one level above Tier02a, the mean 
award rate is actually higher in the undersupplied region than at the transition point, where it dips 
sharply. The right-hand figure shows that the OEM also experiences a dip in mean award rate, 
this time displaced to the left (toward greater undersupply). This dip is a phenomenon of great 
potential importance in logistics applications, and we look forward to exploring it in more detail 
in later research. 

 

Figure 19: LogRAG test for Disturbance Propa-
gation.—The numbers at the left indicate the supply 
available (at orange squares) or the demand (at 
green squares). The total supply available at RMSa 
and RMSb is swept from 6 to 26 in steps of 2. 

5 Transition Efforts 
AORIST technology has proven valuable in Altarum deployment projects for the military in two 
domains (supply network engineering and modeling personnel issues), and is instrumental in a 
new modeling initiative under the Army’s Training and Doctrine Command (TRADOC) Analy-
sis Center (TRAC) Monterey. The LogRAG concepts are currently being briefed to potential us-
ers in the logistics community. In addition, several publications have appeared, making the re-
sults of our research available to others. 

   

Figure 20: Dependence of Mean Award Rate on supply to Tier02a.—Measured at Tier02a 
(left), Tier02a (center), OEM (right). Dots are individual experiments; lines are plotted through 
means. 
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5.1 Supply Network Engineering 
Altarum (and its predecessor organizations ERIM and the Center for Electronic Commerce from 
ITI) has an active practice with industrial and government customers in engineering supply net-
works, with particular emphasis on managing their dynamical behavior. Major channels for tech-
nology transition from AORIST are through two DoD funded consortia in which we are active: 
ONR’s Supply-chain Practices for Affordable Naval Systems (SPANS), and DLA’s Defense 
Sustainment Consortium (DSC). Altarum is leading technical projects under both programs that 
will draw on tools and techniques from AORIST. The SPANS Supply Chain Dynamics project 
focuses on supply chains supporting NorthrupGrumman Newport News, the main shipyard sup-
porting the US nuclear carrier fleet. DSC’s Robust Lean Supply Chain project will focus on 
manufacturing systems at Raytheon. 

• The dependence of computational effort on load and capacity is again a central issue in de-
termining effective capacity and balancing leanness against the need for agility. These mod-
els are critical in building business cases for capacity that would be reckoned “excess capac-
ity” under traditional cost-accounting models, but that are actually necessary for dynamic 
stability. 

• The impact of Activation Level (AL) on Time To Solution (TTS) in the Color RAG is di-
rectly relevant to assessing optimal timing of releases in a supply chain (shipment authoriza-
tions sent from customers to their suppliers). In addition, it is likely that the dynamics of 
convergence depends sensitively on the topology of the supply network, and our methods 
may be critical in assessing the right degree of fan-out, the impact of lower-tier suppliers 
serving multiple mid-tier companies that converge again at the first tier, and related structural 
design issues. 

• Our dynamic metrics will be critical for providing decision support for rough-cut capacity 
planning. 

• Adaptive Parameter Search Environment (APSE) can help identify “tight spots” that require 
more attention (e.g., improved processes, back-up stores, restructuring). In fact, it is already 
being used in the SPANS project. 

5.2 Personnel Models 
Altarum is constructing an agent-based model of the Navy’s personnel system in support of the 
Comprehensive, Optimal Manpower & Personnel Analytic Support System (COMPASS) being 
constructed for the Navy Personnel Research, Studies and Technology Department (NPRST). A 
critical objective for this model is identifying sets of personnel policies that produce desirable 
emergent properties for the system as a whole. We are using parameter search methods based on 
APSE to guide this search.  

5.3 TRAC Monterey 
Altarum is conducting a research project for TRAC Monterey to evaluate the applicability of 
multi-agent models for exploring the dependency of C4ISR systems on their environment. We 
expect to use APSE as a key tool for exploring the dynamic behavior of these systems over their 
parameter space. 
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5.4 Logistics Opportunities 
Altarum’s Supply Chain Engineering practice area has extensive engagements with the logistics 
and supply community, led by BGEN Robert Mansfield, USAF (ret.), former Special Assistant 
for Supply Chain Integration and Logistics Transformation, Deputy Chief of Staff for Installa-
tions and Logistics, Headquarters U.S. Air Force, Washington, D.C. Techniques developed in 
AORIST, including APSE and the LogRAG model, are currently being reviewed with our cus-
tomers in this area, and are generating promising interest. 

5.5 Publications 
In addition to publications cited in the work described above, several publications have appeared 
based on work performed prior to the extension. These include a discussion of our extensions of 
the minority game to support analysis of resource allocation problems [11], an analysis of differ-
ent forms of agent interaction [7], a discussion of APSE[2] (which received two best-paper 
nominations at AAMAS 2003), and an analysis of phase changes in the Color RAG [1]. A dis-
cussion of the applicability of the concept of universality to multi-agent systems has been ac-
cepted for presentation at AAMAS 2004 [9]. 

Acronyms 
AAMAS International Joint Conference on Autonomous Agents and Multi-Agent Systems 
AL Activation Level 
ANT Autonomous Negotiating Teams 
AORIST Agents Overcoming Resource-IndependEnt Scaling Threats 
AP Assignment Problem 
APSE Adaptive Parameter Search Environment 
BGEN Brigadier General 
C4ISR Command, Control, Communications, Computation, Intelligence, Surveillance, and 

Reconnaissance 
CAMERA Coordination and Management Environments for Responsive Agents 
COMPASS Comprehensive, Optimal Manpower & Personnel Analytic Support System 
DARPA Defense Advanced Research Projects Agency 
DLA Defense Logistics Agency 
DSC Defense Sustainment Consortium 
ISI Information Sciences Institute 
IXO Information eXploitation Office 
LogRAG Logistics RAG 
MAPLANT Maintenance Planning ANT 
MG Minority Game 
NPRST Navy Personnel Research, Studies and Technology 
OEM Original Equipment Manufacturer 
ONR Office of Naval Research 
QuiRT Quick Review tool 
RAG Resource Allocation Game 
RAPSIDy Resource Allocation Problem Solver Incorporating Dynamics 
RTE Resource Timeline Environment (element of RAPSIDy) 
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SNAP Schedules Negotiated by Agent Planners 
SPANS Supply-chain Practices for Affordable Naval Systems 
TRAC TRADOC Analysis Center 
TRADOC Training and Doctrine Command (US Army) 
TTS Time To Solution 
TUM Trivially Unsolvable Matrix 
USAF United States Air Force 
VPR Value Per Resource required 
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